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A curvi l inear  equilibrium shape of a thin s t r eam of e las toviscous liquid is discussed.  It is shown 
that one can es t imate  the e las t ic  s t r e s s e s ,  and consequently the elast ic  charac te r i s t i c s  of the 
liquid, f rom the shape of the s t ream.  The ro le  of e last ic  forces  in the stability of liquid fi laments 
is analyzed qualitatively. 

w If one di rec ts  a s t r eam of e las toviscous liquid, for example a polymer  solution, ver t ical ly  downward 
f rom a capil lary into a beaker ,  and then slowly displaces the beaker to the side, the s t r eam will deviate f rom 
the ver t ica l  and follow the beaker.  If the beaker is not moved too fa r ,  motion of the liquid in the curved s t r eam 
is stable and stat ionary (in principle,  for an unlimited time). The existence of a curved stat ionary s t r eam is 
easi ly demonstrated.  A typical photograph of an exper iment  is shown in Fig. 1. 

w  F r o m  the fact  that a s ta t ionary s t r eam in a gravitational field takes on a curved shape resembling a 
ca tenary ,  it follows that a marked longitudinal tension exists  in the s t ream.  

We consider a port ion of the s t r eam sufficiently removed f rom the beginning (exit f rom capillary) and 
end. Motion of the liquid can be considered one-dimensional  in this portion. Let  x(s), y(s) be the pa rame t r i c  
equation of the s t r eam axis; the coordinate s is measured  along the axis and ~0(s) is the angle made with the 
horizontal  by the s t r eam axis. 

Project ing the momentum equation on the tangent and normal  to the s t r eam axis and using the continuity 
equation, we have 

p g[ sin ~ ds -t- dT ----- p d (uZf), (1) 

p g/.cos ~ ds - -  Td q) + p u2[ d (p = O, (2) 

We obtain f rom Eqs. (2) and (3) 

p u[ = p Q = M. (3) 

T = p Q2/[ + p g[ cos (p(d (p/ds). -1 (4) 

Equation (4) is of in teres t  because easi ly measured  quantities a re  on its right side; in o rder  to find T by 
means of Eq. (4) it is sufficient to determine the flow rate  (by a volumetr ic  method, for example) and to de t e r -  
mine f(s) and ~0(s) after  having photographed the s t ream.  

w An exper iment  (Fig. 1) was pe r fo rmed  with a polyacr i lamide solution having a concentration of about 
1.5% at a flow rate Q = 0.30 cm3/sec f rom a capil lary with a radius a = 0.1 cm. The variat ion of the quantities 

and f along the s t r eam is shown in Fig. 2. The measured  resul ts  are approximated by the express ions  

q~_- 1.01+ 0.195 s - -  0,0289 s ~, [ = 0.01(0.53 + 0.183 s) cm2, s, cm. (5) 

(the coordinate s is measured  f rom the point O shown in the photograph). Substitution of numerica l  values in 
Eq. (4) yields a value of ~30 dyn for T in the centra l  position of the s t ream.  [The curve for T(s), also shown 
in Fig. 2, was calculated using the approximations (5).] 

~4. We now turn to an interpretat ion of the resul ts .  Longitudinal tension of the s t ream is made up of the 
tension T c resul t ing f rom the effect  of surface tension,  the tension T v created by the effect of v iscos i ty ,  and 
the t e rm T e produced by e las t ic  deformat ions:  

Institute of Prob lems  in Mechanics,  Academy of Sciences of the USSR, Moscow. Central  Asian Scienti- 
f i c -Resea rch  and Planning Institute of the Pe t ro leum Industry ,  Tashkent.  Trans la ted  f rom Inzhenerno-F iz i -  
cheskii Zhurnal,  Vol. 34, No. 3, pp. 514-518, March,  1978. Original ar t ic le  submitted Februa ry  18, 1977. 

350 0022-0841/78/3403-0350 $07.50 �9 1978 Plenum Publishing Corporat ion 



f ,  iO 2 

f 

Z) / 2 3 S 

Fig .  2 

F ig .  1. C u r v e d  s t r e a m  of p o l y a c r i l a m i d e  so lu t ion :  c = 1 . 5 % ,  ~o = 6 p ,  a o 

Q = 0.3 cm3/ sec .  
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F ig .  2. V a r i a t i o n  of s t r e a m  a r e a  f ,  c m  2, ang le  ~v, and t e n s i o n  T ,  dyn ,  a long  the  
s t r e a m  s ,  cm.  

T = Tr + T u + T  e. (6) 

Of course ,  complete separat ion of the last  two t e rms  is only possible in the region of l inear behavior of 
the mater ia l .  

The  t e n s i o n  wh ich  i s  the r e s u l t  of c a p i l l a r y  f o r c e s  i s  the  d i f f e r e n c e  be tween  " f i l m  s u r f a c e  t ens ion"  and 
the o p p o s i t e l y  d i r e c t e d  f o r c e s  f r o m  c a p i l l a r y  p r e s s u r e ,  so  tha t  

T c = 2 ~  r a - -  ~ r z ( a / r )  = ~ r a .  (7) 

Even  if we keep  the s a m e  va lue  as  tha t  fo r  w a t e r  fo r  the s u r f a c e  t e n s i o n  of the so lu t i on  ( ac tua l l y ,  the 
va lue  should  be l o w e r ) ,  we ob ta in  fo r  a s t r e a m  of r a d i u s  r ~ 0.05 c m  

T c = 3.11t.0.05.70 = 11 dyn. 

T h u s ,  in th i s  e x p e r i m e n t ,  s u r f a c e  t e n s i o n  is  c l e a r l y  r e s p o n s i b l e  fo r  no m o r e  than  a t h i r d  of the o b s e r v e d  
t ens ion .  

The  c o n t r i b u t i o n  of v i s c o s i t y  to the t e n s i o n  i s  g iven by the w e l l - k n o w n  f o r m u l a  

T~, = 3~] du _ 3n Q df (8) 
ds f ds 

The flow cu rve  fo r  the so lu t ion  with  which  the e x p e r i m e n t  w a s  p e r f o r m e d  is  shown in F ig .  3. In the r e q u i r e d  
r a n g e  of s h e a r  r a t e s  (hundreds  of i n v e r s e  s e c o n d s ) ,  the e f f e c t i v e  v i s c o s i t y  v a r i e s  l i t t l e  and i s  c l o s e  to 1 p. 
Subs t i t u t i ng  n u m e r i c a l  v a l u e s  into Eq. (8), we ob ta in  T v ~ 0.22 dyn. T h u s ,  the c o n t r i b u t i o n  of v i s c o s i t y  ( a s s u m -  
ing tha t  i t  i s  of the s a m e  o r d e r  of magn i tude  as  in s h e a r  flow) i s  n e g l i g i b l y  s m a l l .  

If ,  in e s t i m a t i n g  the c o n t r i b u t i o n  of v i s c o s i t y ,  one a s s u m e s  tha t  u n d e r  t e n s i o n  i t  m a i n t a i n s  a c o n s t a n t  
va lue  equa l  to the v i s c o s i t y  ~0 fo r  i n f in i t e ly  s low f low and t a k e s  the va lue  5.4 p f o r  ~0, ( see  F ig .  3), the  con -  
t r i b u t i o n  f r o m  v i s c o s i t y  i s  s m a l l  (~ 1.2 dyn).  T h u s ,  only  the f o r c e s  of s u r f a c e  t e n s i o n  and of the e l a s t i c i t y  
of the l iqu id  a r e  i m p o r t a n t  fo r  the f low u n d e r  c o n s i d e r a t i o n .  The  " e l a s t i c "  c o m p o n e n t  of the  l ong i tud ina l  f o r c e  
a t  the  po in t  s = 1 is  T e = 1 9 d y n ,  a s  i s  e a s i l y  c a l c u l a t e d .  When  f = 7-  10 -3 c m  ~, t h i s  y i e l d s  the e l a s t i c  s t r e s s  

~r = T e / f  = 2.7.103 dyrdcm 2. 

Based on this value, we est imate  the modulus G for an e las t icoviscous liquid. Assuming that an element  
of the  l iqu id  in the  s t r e a m  is  d e f o r m e d  so  r a p i d l y  tha t  i t  f a i l s  to r e l a x ,  we a s s u m e  i t s  d e f o r m a t i o n  a f t e r  e m e r -  
gence  f r o m  the c a p i l l a r y  a s  a u n i f o r m  e x p a n s i o n  by a f a c t o r  ~,  
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= l/to, (9) 

where f0 is the c ross  section of the capil lary.  Assuming  that the e las t ic  behavior of the mater ia l  is roughly 
descr ibed by the theory of rubber- l ike  e las t ic i ty ,  we have for sufficiently large 

a = 2G~ 2, G = 1 /2~  -2. (10) 

Substituting numerica l  values corresponding to the point s = 1, we find h = 4.5 and G = 68 dyn/cm 2. We 
then have for the relaxation time of the liquid 

O = I1/G = 0,08 sec. (11) 

The relaxation t ime can also be es t imated f rom the flow curve for the liquid (Fig. 3) by comparing it with the 
flow curves for  some model of a e las t icoviscous  liquid. In the Spriggs model ([1], Eq.(3.82)), such a match 
yields ~ = 1.5 and 0 s = 0.09. When c ~- 0.8, we have 0 = 0.11 sec. Thus both es t imates  yield s imi lar  values 
for the relaxation time (0 ~ 0.1 sec). Note that this time is of the same order  of magnitude as the time for 
motion of an element  of liquid in the s t ream.  

w The analysis  made permi ts  certain qualitative conclusions about the role of e last ic  effects in the 
"spinability" phenomenon [2], i.e., the capability of the liquid to fo rm elongated fi laments.  Note that the ques -  
tion is not what forces  ensure fi lament equil ibrium (it is easy to see that the force of surface tension can be 
such a force for a sufficiently thin filament) but why the fi lament is stable,  i.e., why local thinning does not 
develop. Local thinning in a long fi lament will not continue to develop if the reduction in fi lament d iameter  
leads to an increase  of the longitudinal force acting on the filament. If the deformation occurs  sufficiently 
rapidly (deformation time small  in compar ison with relaxation t ime),  the total force in a c ross  section is given 
by 

T = nczr  .~ 2G~,=f. (12) 

Here X is the e las t ic  elongation of an e lement  of the liquid (reversible  portion of the deformation).  If X = k 0 
corresponds  to the unperturbed c ross  section f0, X = )~0f0/f, and 

T = n a r  + 2 G)~  f~lf = n a r  ~- a g  o r~lP'. (13) 

The function T(r) has a minimum at r = r ,  = (2a0ro/a)l/ar0. There fo re ,  if 2a 0 > ~/r0, the longitudinal ten-  
sion is a decreas ing  function of f i lament radius and the f i lament is stable; if 2a 0 < oJr0, local compress ion  de-  
velops in the fi lament to a radius r l ,  which is determined by the equation T(rt) = T(r0) so that 

r z = 112% Po [1 + (1 -I- 4 alro%)t l=]/a ,  (14) 

and subsequent extension of the f i lament takes place stably. Of course ,  the analysis ,  which does not consider  
v iscos i ty ,  is an approximate one but it c lear ly  shows the stabilizing role of e last ic  s t r e s s e s  in thin fi laments.  
It is also clear  that the decay time for  an extended f i lament  cannot be significantly less  than the relaxation time 
of the e las t ic  s t r e s s .  The qualitative considerat ions advanced can be confirmed by study of the hydrodynamic 
stability of a capi l lary s t r eam of e las toviscous liquid. 

The authors thank A. N. Prokunin for help in measur ing  the viscosi ty  of the test  solution at low deforma-  
tion rates .  
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the longitudinal coordinate ;  
the angle between s t r e a m  axis  and hor izonta l ;  
the densi ty;  
the v i scos i ty ;  
the shea r  modulus;  
the re laxa t ion  t ime;  
the su r face  tension of liquid; 
the s t r e a m  radius ;  
the s t r e a m  a rea ;  
the p e r i m e t e r  of s t r e a m  c r o s s  sect ion;  
the liquid veloci ty  in s t r e a m ;  

a re  the vo lume t r i c  and m a s s  flow r a t e s ;  
is the longitudinal tension in s t r e a m ;  
is the solution concentrat ion;  
is the shear  ra te ;  
is the degree  of elongation of e l emen t  of liquid; 
is the acce l e ra t ion  of gravi ty .  

Io 
2. 
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THEORY 

I. 

OF EQUATION OF STATE FOR REAL GASES 

V. A .  B u b n o v  UDC 536.711 

An equation of s ta te  for  r ea l  gases  is der ived  by using co r re l a t ion  re la t ions  between the compo-  
nents of the t h e r m a l  veloci ty.  

w C o r r e l a t i o n  o f  V e l o c i t i e s  a n d  M u l t i p l e  C o l l i s i o n s  

i n  P h a s e  S p a c e  

The pr inc ip les  of mechanics  we re  extens ively  used for  mo lecu l a r -k ine t i c  in te rpre ta t ion  of the p r o p e r t i e s  
of gases  in the works  of P r o f e s s o r  Clausius at  Bonn. He succeeded in set t ing up the famous  equation known as 
the v i r i a l  equation. In modern  mo lecu l a r  phys i c s ,  it is wr i t t en  in the f o r m  

2 ! Z 0r = - -  r j  (1) pv T Ii f ~ Oq 

We reca l l  that  the prcduct  pv is in t e rp re ted  h e r e  as the v i r i a l  of the ex te rna l  f o r ce s  acting on a gas enclosed  
in a given volume.  The quantity K e x p r e s s e s  the kinet ic  ene rgy  resu l t ing  f r o m  motion of the pa r t i c l e s  in the 
gaseous sys tem.  The second t e r m  on the r ight  side of Eq. (1) e x p r e s s e s  the v i r i a l  for  the in ternal  fo rces .  

Two phase spaces  a re  introduced for  the der iva t ion  of an equation of s tate  f r o m  Eq. (1). The f i r s t  is a 
ve loci ty  phase  space ,  the coordinates  of which a re  the three  components  $, ~, and s of the t he rma l  veloci ty  v e c -  
tor .  The quanti t ies  (a~/Sr)nx,  (84~/Sr)ny, and (~ /Or)nz  a r e  taken as the coordinates  of the second phase  space.  
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