AN EFFECT OF NORMAL STRESSES

V. M. Entov, S. M. Makhkamov, UDC 532.5:532.135
and K. V., Mukuk

A curvilinear equilibrium shape of a thin stream of elastoviscous liquid is discussed. It is shown
that one can estimate the elastic stresses, and consequently the elastic characteristics of the
liquid, from the shape of the stream. The role of elastic forces in the stability of liquid filaments
is analyzed qualitatively.

§1. 1If one directs a stream of elastoviscous liquid, for example a polymer solution, vertically downward
from a capillary into a beaker, and then slowly displaces the beaker to the side, the stream will deviate from
the vertical and follow the beaker, If the beaker is not moved too far, motion of the liquid in the curved stream
- is stable and stationary (in principle, for an unlimited time). The existence of a curved stationary stream is
easily demonstrated, A typical photograph of an experiment is shown in Fig, 1, :

'§2, From the fact that a stationary stream in a gravitational field takes on a curved shape resembling a
catenary, it follows that a marked longitudinal tension exists in the stream.

We consider a portion of the stream sufficiently removed from the beginning (exit from capillary) and
end. Motion of the liquid can be considered one-dimensional in this portion, Let x(s), y(s) be the parametric
equation of the stream axis; the coordinate s is measured along the axis and ¢(s) is the angle made with the
horizontal by the stream axis.

Projecting the momentum equation on the tangent and normal to the stream axis and using the continuity
equation, we have

p gf sin@ds 4 dT = pd (u*f), 1)
pgfcoseds —Tdo +pu*fdo=0, (2)
puf=pQ=M. . &)
We obtain from Eqgs.(2) and (3)
T = pQ¥f +p gf cos @ (d p/ds). ™* @

Equation (4) is of interest because easily measured quantities are on its right side; in order to find T by
means of Eq. (4) it is sufficient to determine the flow rate (by a volumetric method, for example) and to deter-
mine f(s) and ¢(s) after having photographed the stream,

§3. An experiment (Fig. 1) was performed with a polyacrilamide solution having a concentration of about
1.5% at a flow rate Q = 0.30 em?®sec from a capillary with a radius ¢ = 0.1 cm, The variation of the quantities
¢ and f along the stream is shown in Fig, 2. The measured results are approximated by the expressions

@ = 1,014 0.195 s — 0,0289 82, f = 0.01 (0,53 - 0.183 5) cm?, 5, cm. : (5)

(the coordinate s is measured from the point O shown in the photograph), Substitution of numerical values in
Eq. (4) yields a value of ~30 dyn for T in the central position of the stream. [The curve for T(s), also shown
in Fig. 2, was calculated using the approximations (5).]

§4, We now turn to an interpretation of the results. Longitudinal tension of the stream is made up of the
tension T, resulting from the effect of surface tension, the tension Ty created by the effect of viscosity, and
the term Tg produced by elastic deformations:
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Fig. 1. Curved stream of polyacrilamide solution: c = 1.5%, 7, = 6 p, @5 = 0.1 cm,
Q = 0.3 ecm¥/sec,

Fig. 2. Variation of stream area f, cm?, angle ¢, and tension T, dyn, along the
stream s, cm,

. (
T=T,+T,+T, (6)

Of course, complete separation of the last two terms is only possible in the region of linear behavior of
the material.

The tension which is the result of capillary forces is the difference between "film surface tension" and
the oppositely directed forces from capillary pressure, so that

T,=2nra—ar(a/r)=rnrao. (7

Even if we keep the same value as that for water for the surface tension of the solution (actually, the
value should be lower), we obtain for a stream of radius r ~ 0.05 cm

T, = 3.14-0.05.70 = 11 dyn.

Thus, in this experiment, surface tension is clearly responsible for no more than a third of the observed
tension.

The contribution of viscosity to the tension is given by the well-known formula

du nQ df ,
T —3n M _ % 4 8
o =307 ds f ds ®

The flow curve for the solutionwith which the experiment was performed is shown in Fig, 3, In the required
range of shear rates (hundreds of inverse seconds), the effective viscosity varies litile and is close to 1 p.
Substituting numerical values into Eq. (8), we obtain Ty = 0.22 dyn. Thus, the contribution of viscosity (assum-
ing that it is of the same order of magnitude as in shear flow) is negligibly small.

If, in estimating the contribution of viscosity, one assumes that under tension it maintains a constant
value equal to the viscosity 5, for infinitely slow flow and takes the value 5.4 p for 5,, (see Fig, 3), the con-
tribution from viscosity is small (~1.2 dyn). Thus, only the forces of surface tension and of the elasticity
of the liquid are important for the flow under consideration, The "elastic" component of the longitudinal force
at the point s = 1 is T, = 19dyn, as is easily calculated. Whenf=7- 1073 cm?, this yields the elastic stress

o=T,/f=2.7.103dyn/ cm®

Based on this value, we estimate the modulus G for an elasticoviscous liquid. Assuming that an element
of the liquid in the stream is deformed so rapidly that it fails fo relax, we assume its deformation afier emer-
gence from the capillary as a uniform expansion by a factor A,
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Fig., 3. Flow curve for polyacrilamide
solution used in experiments. 71, p; ¥,
sec-l,

At:f/fov (9)

where f; is the cross section of the capillary. Assuming that the elastic behavior of the material is roughly
described by the theory of rubber-like elasticity, we have for sufficiently large A

0=2GH2, G=1/200"2% (10)

Substituting numerical values corresponding to the point s = 1, we find A = 4.5 and G = 68 dyn/cm®. We
then have for the relaxation time of the liquid

0 = 1/G == 0.08 sec, (11)

The relaxation time can also be estimated from the flow curve for the liquid (Fig., 3) by comparing it with the
flow curves for some model of a elasticoviscous liquid. In the Spriggs model ([1], Eq.(3.82)), such a match
yields a = 1.5 and § g = 0.09. When ¢ = 0.8, we have 6 = 0,11 sec. Thus both estimates yield similar values
for the relaxation time (8 ~ 0.1 sec). Note that this time is of the same order of magnitude as the time for
motion of an element of liquid in the stream.

§5. The analysis made permits certain qualitative conclusions about the role of elastic effects in the
"gpinability" phenomenon {2], i.e., the capability of the liquid to form elongated filaments. Note that the ques-
tion is not what forces ensure filament equilibrium (it is easy to see that the force of surface fension can be
such a force for a sufficiently thin filament) but why the filament is stable, i.e., why local thinning does not
develop. Local thinning in a long filament will not continue to develop if the reduction in filament diameter
leads to an increase of the longitudinal force acting on the filament. If the deformation occurs sufficiently
rapidly (deformation time small in comparison with relaxation time), the total force in a cross section is given
by

T = nor + 2G A?f. (12)

Here A is the elastic elongation ofb an element of the liquid (reversible portion of the deformation)., If A = A,
corresponds to the unperturbed cross section fg, A = Afy/f, and

T = nar + 2GAL fo/f = mour + no, rg/rt. (13)

The function T(r) has a minimum atr = r, = (200r0/a)1/ 3rp. Therefore, if 20, > a/ry, the longitudinal ten-
sion is a decreasing function of filament radius and the filament is stable; if 20y < a/r,, local compression de-
velops in the filament to a radius ry, which is determined by the equation T(r;} = T(r() so that

ry= 120,731 + (1 + 4 alry0) e, - (14)

and subsequent extension of the filament takes place stably. Of course, the analysis, which does not consider
viscosity, is an approximate one but it clearly shows the stabilizing role of elastic stresses in thin filaments,
It is also clear that the decay time for an extended filament cannot be significantly less than the relaxation time
of the elastic stress. The qualitative considerations advanced can be confirmed by study of the hydrodynamic
stability of a capillary stream of elastoviscous liquid,

The authors thank A. N. Prokunin for help in measuring the viscosity of the test solution at low deforma-
tion rates.
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NOTATION

is the longitudinal coordinate;

is the angle between stream axis and horizontal;
is the density;

is the viscosity;

is the shear modulus;

is the relaxation time;

is the surface tension of liquid;

is the stream radius;

is the stream area;

is the perimeter of stream cross section;
is the liquid velocity in stream;
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are the volumetric and mass flow rates;

is the longitudinal tension in stream;

is the solution concentration;

is the shear rate;

is the degree of elongation of element of liquid;
is the acceleration of gravity.
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THEORY OF EQUATION OF STATE FOR REAL GASES
1.

V. A. Bubnov UDC 536,711

An equation of state for real gases is derived by using correlation relations between the compo-
nents of the thermal velocity.

§1, Correlation of Velocities and Multiple Collisions

in Phase Space

The principles of mechanics were extensively used for molecular-kinetic interpretation of the propei'ties
of gases in the works of Professor Clausius at Bonn, He succeeded in setting up the famous equation known as
the virial equation. In modern molecular physics, it is written in the form

- —"K”—E 6(15(r o)

We recall that the product pv is interpreted here as the virial of the external forces acting on a gas enclosed
in a given volume. The quantity K expresses the kinetic energy resulting from motion of the particles in the
gaseous system. The second term on the right side of Eq. {1} expresses the virial for the internal forces.

Two phase spaces are introduced for the derivation of an equation of state from Eq. (1). The firstis a
velocity phase space, the coordinates of which are the three components £, , and ¢ of the thermal velocity vec~
tor. The quantities (9&/0r)ny, (Sb/ar)ny, and (82/5r)nz are taken as the coordinates of the second phase space.

Machine-~Building Institute, Moscow. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol, 34, No, 3,
pp. 519-528, March, 1978, Original article submitted February 8, 1977,

0022-0841/78/3403-0353 $07,50 ©1978 Plenum Publishing Corporation 353



